Fall 2009 Math 245 Exam 1 Solutions

Exam scores: One quarter of the exam scores were below 71 , one quarter between 71 and 76 (the median), one quarter between 76 and 83 , and one quarter of the scores were above 83 .

1. Carefully define the following terms:

This problem tests the students' attention to detail and commitment to accurate definitions, which are very important in mathematics. The inverse of conditional proposition $p \rightarrow q$ is the proposition $\sim p \rightarrow \sim q$. Modus Tollens is a rule of deduction that concludes $\sim p$ from hypotheses $p \rightarrow q$ and $\sim q$. Syntax is a set of artificial rules about arrangements of otherwise meaningless symbols. Semantics is the interpretation of symbols to derive meaning about other things. A tautology is a compound proposition that is true for every possible combination of truth values of its components.
2. Simplify $\sim \forall x \exists y \exists z x+y \leq z$, to eliminate \sim.

This problem tests negation of quantified propositions, as well as negation of simple arithmetic facts. $\exists x \forall y \forall z x+y>z$.
3. Simplify $\sim((p \vee \sim q) \wedge(r \vee(\sim s \wedge t)))$ as much as possible, so that no compound proposition is negated. This problem tests De Morgan's Law. $\sim(p \vee \sim q) \vee \sim(r \vee(\sim s \wedge t)) \equiv(\sim p \wedge \sim \sim q) \vee(\sim r \wedge \sim(\sim$ $s \wedge t)) \equiv(\sim p \wedge q) \vee(\sim r \wedge(s \vee \sim t))$
4. Show that the proposition $s=(p \wedge q) \vee(\sim p \vee(p \wedge \sim q))$ is a tautology.

This problem tests complex, multistep, truth tables, and the meaning of "tautology". The last column of the table below proves that s is a tautology.

p	q	$\sim p$	$\sim q$	$p \wedge q$	$p \wedge \sim q$	$\sim p \vee(p \wedge \sim q)$	s
T	T	F	F	T	F	F	T
T	F	F	T	F	T	T	T
F	T	T	F	F	F	T	T
F	F	T	T	F	F	T	T
							\uparrow

5. Use a truth table to determine whether this argument is valid:

$\begin{array}{r} p \\ p \rightarrow q \\ \sim q \vee r \\ \therefore \quad r \end{array}$	This problem tests the truth table method to determine validity of an argument.			
$p \quad q \quad r$	$r \quad p \rightarrow q$	$\sim q$	$\sim q \vee r$	Reason for elimination
T T T	T T	F	T	not eliminated
T T F	F T	F	F	$\sim q \vee r$
T F T	T F	T	T	$p \rightarrow q$
T F F	F F	T	T	$p \rightarrow q$
F T T	T T	F	T	p
F T F	F T	F	F	$p, \sim q \vee r$
F F T	T T	T	T	p
F F F	F T	T	T	p

All remaining rows (the first one) have r true, hence the argument is valid. Note: it is important to justify why each row is being eliminated.
6. Construct the truth table for the proposition $(p \rightarrow r) \leftrightarrow(q \rightarrow r)$.

This problem tests complex truth tables involving conditionals and biconditionals.

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \leftrightarrow(q \rightarrow r)$
T	T	T	T	T	T
T	T	F	F	F	T
T	F	T	T	T	T
T	F	F	F	T	F
F	T	T	T	T	T
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	T	T

7. Find a proposition using only combinations of p, q, \downarrow, that is logically equivalent to $p \wedge q$.

This problem tests understanding of compound NOR propositions. The answer is given in the last column, i.e. $p \wedge q \equiv(p \downarrow p) \downarrow(q \downarrow q)$.

p	q	$p \downarrow p$	$q \downarrow q$	$(p \downarrow p) \downarrow(q \downarrow q)$
T	T	F	F	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	F

8. Convert the number $B A D_{16}$ to base 2 and to base 10 .

This problem tests base conversion. Conversion to base 2 can be done in groups of four bits, giving $101110101101_{2}=101110101101_{2}$. Conversion to base 10 is done by: $11 \cdot 16^{2}+10 \cdot 16+13=2989_{10}$.
9. Fill in the missing justifications, including line numbers, for the following proof. This problem tests application of the rules of logic to construct a valid proof.

$$
\begin{aligned}
&(p \vee q) \vee r \\
& s \rightarrow c \text { hypothesis } \\
& p \vee r \rightarrow s \text { hypothesis } \\
& \sim s \text { rule of contradiction, applied to } 2 . \\
& \sim(p \vee r) \\
& \sim p \wedge \sim r \text { medus tollens, applied to 3. and } 4 . \\
& \sim r \text { conjunctive simplification, applied to } 6 . \\
& p \vee q \\
& \text { disjunctive syllogism, applied to 1. and } 7 . \\
& \sim p \text { conjunctive simplification, applied to } 6 . \\
& \therefore q \\
& \text { disjunctive syllogism, applied to 8. and } 9 .
\end{aligned}
$$

10. All bizzles are azzles, but not all azzles are bizzles. There is at least one cozzle that is also a bizzle. There is at least one dizzle that is not a bizzle. All cozzles are dizzles. Must there be a dizzle that is also an azzle?
This problem tests semantic translation into symbols, as well as interpretation of quantified propositions. For universe element x, let $A(x)$ be the proposition that x is an azzle, etc.
11. $\forall x \in U, B(x) \rightarrow A(x)$
12. $\exists x \in U, A(x) \wedge \sim B(x)$ not needed for proof
13. $\exists x \in U, C(x) \wedge B(x)$
14. $\exists x \in U, D(x) \wedge \sim B(x)$ not needed for proof
15. $\forall x \in U, C(x) \rightarrow D(x)$

By 3., there is some universe element, call it George, that is both a bizzle and a cozzle. By 1., George is also an azzle. By 5., George is also a dizzle. Hence George is an azzle and a dizzle, so the answer is 'yes'.

